NORMAL 6-VALENT CAYLEY GRAPHS OF ABELIAN GROUPS

Mehdi Alaeiyan

Abstract: We call a Cayley graph Γ = Cay (G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aut(Γ). In this paper, a classification of all non-normal Cayley graphs of finite abelian group with valency 6 was presented.

Keywords: Cayley graph, normal Cayley graph, automorphism group.

1. Introduction¹

Let G be a finite group, and S be a subset of G not containing the identity element 1_G . The Cayley digraph Γ =Cay(G,S) of G relative to S is defined as the graph with vertex set $V(\Gamma) = G$ and edge set $E(\Gamma)$ consisting of those ordered pairs (x, y) from G for which $yx^{-1} \in S$. Immediately from the definition we find that, there are three obvious facts: (1) $Aut(\Gamma)$ contains the right regular representation $R(G)$ of G and so Γ is vertextransitive.

(2) Γ is connected if and only if $G = < S$ >. (3) Γ is an undirected if and only if $S^{-1} = S$.

A Cayley (di)graph $\Gamma = \text{Cay}(G, S)$ is called normal if the right regular representation R(G) of G is a normal subgroup of the automorphism group of Γ.

The concept of normality of Cayley (di)graphs is known to be important for the study of arc-transitive graphs and half-transitive graphs (see[1,2]). Given a finite group G, a natural problem is to determine all normal or non-normal Cayley (di)graphs of G. This problem is very difficult and is solved only for the cyclic groups of prime order by Alspach [3] and the groups of order twice a prime by Du et al. [4], while some partial answers for other groups to this problem can be found in [5-8]. Wang et al. [8] characterized all normal disconnected Cayley's graphs of finite groups. Therefore the main work to determine the normality of Cayley graphs is to determine the normality of connected Cayley graphs. In [5, 6], all non-normal Cayley graphs of abelian groups with valency at most 5 were classified. The purpose of this paper is the following main theorem.

Theorem 1.1 Let Γ = Cay (G, S) be a connected undirected Cayley graph of a finite abelian group G on S with valency 6. Then Γ is normal except when one of the following cases happens:

(1): $G = Z_2^5 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle \times \langle e \rangle$, $S = \{a, b, c, abc, d, e\}.$

(2): $G = Z_2^3 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$ (m \ie 3), $S = \{a, b, c, abc, d, d^{-1}\}.$

(3):
$$
G = Z_2^2 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle
$$
,

 $S = \{a, b, ab, c^2, c, c^{-1}\}.$

(4):
$$
G = Z_2^4 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle \times \langle e \rangle
$$
,
\n $S = \{a, b, c, d, e, e^{-1}\}.$

(5):
$$
G = Z_2^3 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle
$$

\n $S_1 = \{a, b, c, d^2, d, d^{-1}\},$
\n $S_2 = \{a, b, ab, c, d, d^{-1}\}, S_3 = \{a, b, c, ad^2, d, d^{-1}\}.$

(6): G =
$$
\mathbb{Z}_2^2 \times \mathbb{Z}_6 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle
$$
,
S = {a, b, ab, c³, c, c⁻¹}.

(7):
$$
G = Z_2^3 \times Z_6 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle
$$
,
\n $S = \{a, b, c, d^3, d, d^{-1}\}.$

(8):
$$
G = Z_6 \times Z_{2m} = \langle a \rangle \times \langle b \rangle
$$
 ($m \ge 2$),
\n $S = \{a^3, b^m, a, a^{-1}, b, b^{-1}\}.$

(9):
$$
G = Z_2 \times Z_6 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle
$$
 ($m \ge 3$),
\n $S = \{a, b^3, b, b^{-1}, c, c^{-1}\}.$

(10):
$$
G = Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle
$$
 (m \ge 2),
\n $S = \{a, a^{-1}, a^2, b, b^{-1}, b^m\}.$

(11):
$$
G = Z_2 \times Z_4 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle
$$
 (m ≥ 3),
\n $S_1 = \{a, b, b^{-1}, b^2, c, c^{-1}\}, S_2 = \{a, b, b^{-1}, ab^2, c, c^{-1}\}.$
\n(12): $G = Z_2 \times Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m ≥ 2),
\n $S = \{a, b, b^{-1}, c, c^{-1}, c^m\}.$

(13): $G = Z_2^2 \times Z_4 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$ $(m\geq 3)$, $S = \{a, b, c, c^{-1}, d, d^{-1}\}.$

 \overline{a}

Paper first received March. 2, 2007, and in revised form Jan.10, 2007.

*M Alaeiyan***,** Department of Mathematics, Iran University of Science and Technology, alaeiyan@iust.ac.ir

(14): $G = Z_2^3 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$ (m\le 3), $S = \{a, b, cd, cd^{-1}, d, d^{-1}\}.$ (15): $G = Z_2^2 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m = 5, 10), $S = \{a, b, c, c^{-1}, c^3, c^{-3}\}.$ (16): $G = Z_2^2 \times Z_{4m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m \geq 2), $S = \{a, b, c, c^{-1}, c^{2m+1}, c^{2m-1}\}.$ (17): G = $Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ (m is odd), $S = \{a, a^3, b, b^{-1}, b^{m+1}, b^{m-1}\}.$ (18): $G = Z_4^2 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m\ge 3), $S = \{a, a^3, b, b^3, c, c^{-1}\}.$ (19): $G = Z_{4m} \times Z_n = \langle a \rangle \times \langle b \rangle$ (m\pi 2, n\pi 3), $S = \{a, a^{-1}, a^{2m+1}, a^{2m-1}, b, b^{-1}\}.$ (20): $G = Z_2 \times Z_m \times Z_n = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m ≥ 3 , n ≥ 3), $S = {ab, a b⁻¹, b,b⁻¹, c, c⁻¹}.$ (21): $G = Z_m \times Z_n = \langle a \rangle \times \langle b \rangle$ (m = 5, 10, n \places 3), $S = \{a, a^{-1}, a^3, a^{-3}, b, b^{-1}\}.$ (22): $G = Z_2^4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$, $S = \{a, b, ab, c, abc, d\}.$ (23): $G = Z_2^2 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, $S = \{a, b, ac^2, c, c^{-1}, c^2\}.$ (24): $G = Z_2^3 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$, $S = \{a, b, c, d, d^{-1}, abd^2\}.$ (25): $G = Z_2^2 \times Z_{3m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m\le 1), $S = \{a, b, ac^m, ac^{2m}, c, c^{-1}\}.$ (26): $G = Z_2 \times Z_{10} = \langle a \rangle \times \langle b \rangle$, $S = \{a, b, b^3, b^5, b^7, b^9\}$. (27): $G = Z_2^2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m\le 2), $S = \{ac, ac^{-1}, b, c^m, c, c^{-1}\}.$ (28): $G = Z_2 \times Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m ≥ 2), $S = \{a, b^2c^m, b, b^{-1}, c, c^{-1}\}.$ (29): $G = Z_2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ (m ≥ 3), $S = \{a, b^m, b, b^{-1}, b^{m+1}, b^{m-1}\}.$ (30): $G = Z_2^2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m\le 2), $S = \{a, b, ac, ac^{-1}, c, c^{-1}\}.$ (31): $G = Z_2 \times Z_{6m} = \langle a \rangle \times \langle b \rangle$ (m \geq 3, m is odd), $S = \{a, b^2, b^{-2}, b^m, b^{5m}, b^{3m}\}.$ (32): $G = Z_2^2 \times Z_{6m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m\le 2), $S = \{a, bc^m, bc^{3m}, bc^{5m}, c, c^{-1}\}.$

(33): $G = Z_2^3 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, $S = \{a, b, c, ab, ac, c\}$ abc}. (34): $G = Z_2^4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$, $S = \{a, b, c, d, abc, abd\}.$ (35): $G = Z_2^2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m\le 2), $S = \{a, b, ac^m, bc^m, c, c^{-1}\}.$ (36): $G = Z_2^2 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, S_1 = {a, b, ab, ac², c, c⁻¹}, $S_2 = \{a, b, ac^2, abc^2, c, c^{-1}\}.$ (37): $G = Z_2^3 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$, $S = \{a, b, c, abcd^2, d, d^{-1}\}.$ (38): $G = Z_2 \times Z_{6m} = \langle a \rangle \times \langle b \rangle$ (m ≥ 2), $S = {a, b^{3m}, ab^{2m}, ab^{4m}, b, b^{-1}}$. (39): $G = Z_2 \times Z_{4m} = \langle a \rangle \times \langle b \rangle$ (m\le 1), $S = {a, ab^m, ab^{2m}, ab^{3m}, b, b^{-1}}$. (40): G = $Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ (m \geq 2), $S = \{a, a^{-1}, b^{m}, a^{2}b^{m}, b, b^{-1}\}.$ (41): $G = Z_2^2 \times Z_{4m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m\le 1), $S = \{a, ac^{2m}, bc^{m}, bc^{3m}, c, c^{-1}\}.$ (42): $G = Z_2 \times Z_{10} = \langle a \rangle \times \langle b \rangle$, $S = \{a, ab^5, b, b^9, b^3, b^7\}.$ (43): $G = Z_2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$, S_1 = {a, b, b⁻¹, b^m, ab, a b⁻¹}, m ≥ 2, $S_2 = \{a, ab^m, b, b^{-1}, ab, a b^{-1}\}, m \ge 2$, $S_3 = {ab^m, b^m, b, b^{-1}, ab, a b^{-1}}$, m≥ 2, $S_4 = {a, ab^m, b}$, b^{-1} , b^{m+1} , b^{m-1} }, $m \ge 3$, $S_5 = \{a, b, b^{-1}, b^{m}, ab^{m+1}, ab^{m-1}\},$ m≥ 3, S₆ ={a, ab^m, b, b⁻¹, ab^{m+1}, ab^{m-1}}, m≥ 3 $S_7 = {ab^m, b, b^{-1}, b^m, ab^{m+1}, ab^{m-1}}, m \ge 3$ (44): $G = Z_2^2 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, $S_1 = \{a, b, c, c^{-1},$ abc, abc⁻¹}, m≥ 3, S₂={a, b, c, c⁻¹, ac^{k+1}, ac^{k-1}}, m = 2k, $k \ge 3$, S₃= {a, b, c, c⁻¹, abc^{k+1}, abc^{k-1}}, m =2k, k ≥ 3, S_4 = {a, bc, b c⁻¹, ack, c, c⁻¹}, m = 2k, k ≥ 2, S_5 = {a, bc^{k+1}, bc^{k-1}, c^k, c, c⁻¹}, m = 2k, k ≥ 3, S_6 = {a, bc^{k+1}, bc^{k-1}, ac^k, c, c⁻¹}, m = 2k, k ≥ 3, S_7 = {a, b, c, c⁻¹, ac, ac⁻¹}, m = 2k - 1, k ≥ 2. (45): $G = Z_{4m} = \langle a \rangle$ (m\pi 2), $S = \{a, a^{-1}, a^{m}, a^{-m}, a^{2m+1}, a^{2m-1}\}.$ (46) : G = Z_{2m} = <a> (m

≥ 4), $S = \{a, a^{-1}, a^{m+1}, a^{m-1}, a^k, a^{-k}\}\ (2 \le k \le m - 2),$ $(m, k) = 1$, if $l > 2$ or $l = 2$ for $m = 4i + 2$; $(k = 2i$, with i odd or $k = 2i + 2$, with i even). (47): $G = Z_2 \times Z_m = \langle a \rangle \times \langle b \rangle$ (m ≥ 5), S₁ = {ab, ab⁻¹, b, b⁻¹, b^j, b^{-j}} (2 ≤j < $\frac{m}{2}$), (m, j) = p > 2; m = $(t + 1)p$.

S₂= {ab, ab b⁻¹, b, b b⁻¹, ab^j, ab^{-j}}, (2 \leq \leq \must \mu $j=p > 2; m = (t + 1)p$. (48): $G = Z_2 \times Z_8 = \langle a \rangle \times \langle b \rangle$, $S_1 = \{ab, ab^{-1}, b, b^{-1}, b^3, b^{-3}\},$ S₂= {ab, ab⁻¹, b, b⁻¹, ab³, ab⁻³}. (49): $G = Z_{2m} \times Z_n = \langle a \rangle \times \langle b \rangle$ (m\le 2, n\le 3), $S = \{a, a^{-1}, a^{m}b, a^{m}b^{-1}, b, b^{-1}\}.$ (50): $G = Z_{2m} \times Z_{2n} = \langle a \rangle \times \langle b \rangle$ (m ≥ 3 , n ≥ 2), $S = \{a, a^{-1}, a^{m+1}b^n, a^{m-1}b^n, b, b^{-1}\}.$ (51): $G = Z_{6m} = \langle a \rangle$ (m \geq 2), $S_1 = \{a, a^{-1}, a^3, a^{-3}, a^{3m+1}, \}$ $a^{3m-1}\},$ $S_2 = \{a, a^{-1}, a^{3m+1}, a^{3m-1}, a^{3m+3}, a^{3m-3}\}.$ (52): $G = Z_m = \langle a \rangle$ (m = 7, 14), $S = \{a, a^{-1}, a^3, a^{-3}, a^5, a^{-4}\}$ a^{-5} . (53): $G = Z_{3m} = \langle a \rangle$ (m\pi 3), $S = \{a, a^{-1}, a^{m-1}, a^{m+1}, a^{2m-1}, a^{2m+1}\}.$ (54) : G = Z_{16m-4} = <a> (m

2 1), $S = \{a, a^{-1}, a^{4m-2}, a^{12m-2}, a^{8m-3}, a^{8m-1}\}.$ (55): $G = Z_{16m+4} = \langle a \rangle$ (m\pi 1), $S = \{a, a^{-1}, a^{4m+2}, a^{12m+2}, a^{8m+1}, a^{8m+3}\}.$ (56) : $G = Z_3 \times Z_3 = \langle a \rangle \times \langle b \rangle$, $S = \{a, a^2, b, b^2, a^2b, ab^2\}.$ (57): $G = Z_2 \times Z_4 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, $S = \{a, b, b^{-1}, c, c^{-1}, ab^2 c^2\}.$

2. Primary Analysis

Proposition 2.1 [9, Proposition 1.5] Let Γ = Cay (G, S) be a Cayley graph of G over S, and $A = Aut(\Gamma)$. Let A_1 be the stabilizer of the identity element 1 in A.

Then Γ is normal if and only if every element of A_1 is an automorphism of G.

Proposition 2.2 [6, Theorem 1.1] Let G be a finite abelian group and S be a generating subset of $G - 1_G$. Assume S satisfies the condition that, if s, t, u, $v \in S$ with $1 \neq st = uv$, implies $\{s, t\} = \{u, v\}$. Then the Cayley graph Cay (G, S) is normal.

Let X and Y be two graphs. The direct product $X \times Y$ is defined as the graph with vertex set V $(X \times Y) = V$ $(X) \times V$ (Y) such that for any two vertices $u = [x_1, y_1]$ and $v = [x_2, y_2]$ in V (X ×Y), [u, v] is an edge in X ×Y, whenever $x_1 = x_2$ and $[y_1, y_2] \in E(Y)$ or $y_1 = y_2$ and $[x_1, x_2] \in E(X)$. Two graphs are called relatively prime if they have no nontrivial common direct factor. The lexicographic product X[Y] is defined as the graph vertex set V $(X[Y]) = V(X) \times V(Y)$ such that for any two vertices $u = [x_1, y_1]$ and $v = [x_2, y_2]$ in V (X[Y]), [u, v] is an edge in X[Y] whenever $[x_1, x_2] \in E(X)$ or $x_1 = x_2$ and $[y_1, y_2] \in E(Y)$.

Let $V(Y) = \{y_1, y_2, ..., y_n\}$. Then there is a natural embedding nX in X[Y], where for $1 \le i \le n$, the ith copy of X is the subgraph induced on the vertex subset $\{(x, \})$ y_i |x $\in V(X)$ } in X[Y]. The deleted lexicographic product $X[Y]$ – nX is the graph obtained by deleting all the edges of (this natural embedding of) nX from X[Y]. Let Γ be a graph and α a permutation V (Γ) and C_n a circuit of length n. The twisted product $\Gamma \times_{\alpha} C_n$ of Γ by C_n with respect to α is defined by;

 V (Γ × _α C_n) = V (Γ) × V (C_n) = {(x, i) | x ∈ V (Γ), i = $0, 1, \ldots, n-1\},\$ $E(\Gamma \times_{\alpha} C_n) = \{[(x, i), (x, i+1)] | x \in V (T), i = 0, 1, ...$ n−2}∪ {[(x, n−1), $(X^{\alpha}, 0)$] |x ∈ V (Γ)} [{[(x, i), (y, i)] $[[x, y] \in E(\Gamma), i = 0, 1, ..., n-1].$

The graph Q_4^d denotes the graph obtained by connecting all long diagonals of 4-cube $Q₄$, that is, connecting all vertices u and v in Q_4 such that $d(u, v) =$ 4. The graph $K_{m,m} \times_c C_n$ is the twisted product of $K_{m,m}$ by C_n such that c is a cycle permutation on each part of the complete bipartite graph $K_{m,m}$. The graph $Q_3 \times_d C_n$ is the twisted product of Q_3 by C_n such that d transposes each pair of elements on long diagonals of

Q₃. The graph
$$
C_{2m}^d
$$
 [2K₁] is defined by:

$$
V(\mathbf{C}_{2m}^{d} [2K_{1}]) = V (C_{2m}[2K_{1}]),
$$

 $E(C_{2m}^d[2K_1]) = E(C_{2m}[2K_1]) \bigcup \{[(x_i, y_j), (x_{i+m}, y_j)]\}\$ 0, 1, ..., m – 1, j = 1, 2}, where V $(C_{2m}) = \{x_0, x_1, ...,$ x_{2m-1} } and $V(2K_1) = \{y_1, y_2\}$.

Let $G = G_1 \times G_2$ be the direct product of two finite groups G_1 and G_2 , let S_1 and S_2 be subsets of G_1 and G_2 , respectively, and let S = $S_1 \cup S_2$ be the disjoint union of two subsets S_1 and S_2 . Then we have,

Lemma 2.3

(1) Cay $(G, S) \cong Cay (G_1, S_1) \times Cay (G_2, S_2)$.

(2) If Cay (G, S) is normal, then Cay (G_1, S_1) is also normal.

(3) If both of Cay (G_1, S_1) and Cay (G_2, S_2) are normal and relatively prime, then Cay (G, S) is normal.

3. Proof of the Main Theorem

In this section, Γ always denotes the Cayley graph $Cay(G, S)$ of an abelian group G on S with valency 6. Let $A = Aut(\Gamma)$. Then A_1 and A_1 ^{*} denote the stabilizer of 1 in A and the subgroup of A which fixes $\{1\} \bigcup S$, pointwise, respectively. In order to prove Theorem 1.1 we need several lemmas.

Lemma 3.1 Let $G = Z_{2m} = \langle a \rangle$, (m\pi 5), and $S = \{a^i, a^j\}$ a^{-i} , a^{m+i} , a^{m-i} , a , a^{-1} } $2 \le i < \frac{m}{2}$. Then Γ = Cay (G, S) is normal .

Proof Let $\Gamma_2(1)$ be the subgraph of Γ with vertex set $\{1\} \cup S \cup S^2$ and edge set $\{[1,s], [s, st] \mid s,t \in S\}$. By observing the subgraph $\Gamma_2(1)$, it is easy to prove that A_1^* fixes S² pointwise, which implies that $A_1^* = 1$. Thus A₁ acts faithfully on S. Observing the subgraph $\Gamma_2(1)$ again, A_1 , as a permutation group on S, is generated by $(a, a^{-1})(a^{m+i}, a^{m-i})$. So $|A_1| = 2$ and $\Gamma = Cay(G, S)$ is normal.

Lemma 3.2: Let $G = Z_2^2 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, m = 4k, k \geq 2 and S = {a, b, c^k, c^{3k}, c, c⁻¹}. Then Γ = Cay (G, S) is normal.

Proof Set $G_1 = \langle a,b \rangle$, $G_2 = \langle c \rangle$, $S_1 = \{a, b\}$, $S_2 = \{c^k, c^k\}$ c^{3k} , c, c^{-1} }. Then $\Gamma_1 = Cay (G_1, S_1) \cong K_2 \times K_2$. Note that $Γ_1$ and $Γ_2$ = Cay (G₂, S₂) are relatively prime. By [5, Theorem 1.1] and [6, Theorem 1.2], Γ_1 and Γ_2 are normal and by Lemma 2.3, Γ = Cay (G, S) is normal.

With similar arguments as in Lemmas 3.1 and 3.2, we have the following lemma.

Lemma 3.3 Let G and S be as the following. Then the Cayley graphs Γ = Cay (G, S) are normal.

(1):
$$
G = Z_2^4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle
$$
,
\n $S = \{a, b, c, d, ad, abc\}$.
\n(2): $G = Z_2^2 \times Z_6 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$,
\n $S = \{a, b, ac^3, c^3, c, c^{-1}\}$.
\n(3): $G = Z_2^2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m ≥ 2),
\n $S = \{a, b, abc^m, c^m, c, c^{-1}\}$.
\n(4): $G = Z_2 \times Z_{6m} = \langle a \rangle \times \langle b \rangle$ (m ≥ 2),
\n $S = \{a, ab^m, ab^{3m}, ab^{5m}, b, b^{-1}\}$.
\n(5): $G = Z_2 \times Z_{6m} = \langle a \rangle \times \langle b \rangle$ (m ≥ 2),
\n $S = \{a, b^m, b^{3m}, b^{5m}, b, b^{-1}\}$.
\n(6): $G = Z_6 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ (m ≥ 3),
\n $S = \{a, a^T, a^3, a^3b^m, b, b^{-1}\}$.
\n(7): $G = Z_2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$,
\n $S_1 = \{a, ab^{m+2}, ab^{m-2}, b^m, b, b^{-1}\}$, (m ≥ 4),
\n $S_2 = \{a, ab^{m+2}, ab^{m-2}, b^m, b, b^{-1}\}$, (m ≥ 4),
\n $S_3 = \{a, b^{m+2}, b^{m-2}, b^m, b, b^{-1}\}$, (m ≥ 4),
\n $S_3 = \{a, ab^{m+2}, ab^{m-2}, b^m, b, b^{-1}\}$, (m ≥ 5),
\n $S_3 = \{a, ab^{m+1}, ab^{3m+2}, b^{2m+$

S1= {a, abm, ab3m, b2m, b, b−¹ }, S2= {a, b, b[−]¹ , bm, b3m, b2m}, S3 = {a, ab2m, bm, b3m, b, b−¹ }. (12): G = Z4 × Z2m = <a> × (m ≥ 3), S = {a2 , a2 bm, a, a−¹ , b, b[−]¹ }. (13): G = × Z4m = <a> × × <c> (m ≥ 2), 2 2 z S1= {a, b, abcm, abc3m, c, c−¹ }, S2= {a, b, acm, ac3m, c, c −1 }, S3 = {a, b, cm, c3m, c, c−¹ }, S4 = {a, c2m, bcm, bc3m, c, c−¹ }. (14): G = × Z4m = <a> × × <c> × <d> (m ≥ 2), 3 2 z S = {a, b, cdm, cd3m, d, d−¹ }. (15): G = × Zm = <a> × × <c> (m = 7, 9, m ≥ 11), 2 2 z S = {a, b, c, c[−]¹ , c3 , c[−]³ }. (16): G = Z2× Z4× Z4m+2 = <a>××<c> (m ≥ 1), S = {a, b² c 2m+1, bcm, b3 c 3m+2, c, c−¹ }. (17): G = × Z4m+2 = <a> × × <c> (m ≥ 2), 2 2 z S = {a, c2m+1, bcm, bc3m+2, c, c−¹ }. (18): G = Z2× Z4 × Z2m = <a> × × <c> (m ≥ 3), S = {a, acm, b, b−¹ , c, c[−]¹ }. (19): G = Z2 × Z2m = <a> × (m ≥ 6), S1= {a, bm, b, b−¹ , b³ , b[−]³ }, S2={a, abm, b, b−¹ , b³ ,b[−]³ }. (20): G = Z4m × Zn = <a> × (m ≥ 2, n ≥ 3), S = {a, a[−]¹ , am, a3m, b, b−¹ }. (21): G = Z4m × Z4n = <a> × × <c> (m, n ≠ 4), S = {a, a[−]¹ , b, b[−]¹ , c, c[−]¹ }. (22): G = Z4 × Zm × Zn = <a> × × <c> (m, n ≠ 3), S = {a, a3 , b, b[−]¹ , c, c[−]¹ }. (23): G = Z2m (m ≥ 5), S = {a, a[−]¹ , aj , a[−]j , am+j , am−^j } (2 ≤ j < ^m ²). (24): G = Zm× Zn = <a>× (m = 7, 9, m ≥ 11, n ≥ 3), S = {a, a[−]¹ , a3 , a[−]³ , b, b[−]¹ }. (25): G = Z3m-1× Z3n = <a>× (m ≥ 2, n ≥ 1), S = {a, a[−]¹ , b, b[−]¹ , ambn , a2m−¹ b2n}. (26): G = Z3m+1 × Z3n = <a> × (m, n ≥ 1), S = {a, a[−]¹ , b, b[−]¹ , amb2n, a2m+1bn }. (27): G = Zm × Zn = <a> × (m ≥ 5, n ≥ 3), S = {a, a[−]¹ , b, b[−]¹ , a2 b, a[−]² b[−]¹ }. (28): G = Z2m+1 × Zn = <a> × (m, n ≥ 3), S = {a, a[−]¹ , am, am+1, b, b−¹ }. (29): G = Z2m+1 × Z2n+1 = <a>× (m, n ≥ 2), S = {a, a[−]¹ , b, b[−]¹ , ambn+1, am+1bn }.

(30): $G = Z_2 \times Z_{2n+1} \times Z_{2m+1} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m, n \le 1), $S = {ab^mc^{n+1}, ab^{m+1}c^n, b, b^{-1}, c, c^{-1}}.$ (31): $G = Z_{4m} = \langle a \rangle$ (m \geq 2), $S = \{a, a^{-1}, a^k, a^{-k}, a^m, a^{-m}\}, (1 \le k \le 2m, k \ne m, 2m-1).$ (32): G = $Z_4 \times Z_m$ = <a> \times
b> (m \geq 3), $S = \{a, a^{-1}, b, b^{-1}, ab^{j}, a^{-1}b^{-j}\}, 1 \le j \le \frac{m}{\sqrt{2}}$ 2 $\left\lfloor \frac{m}{2} \right\rfloor$ (When m $\neq 2k$ for every j or m = 2k, j $\neq k$). (33): $G = Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ (m \geq 2), $S = \{a, a^{-1}, b, b^{-1}, a^2b^j, a^2b^{-j}\}\$ 1 ≤ j < m (for every $j \neq 1, m - 1$). (34): $G = Z_4 \times Z_{2m-1} = \langle a \rangle \times \langle b \rangle$ (m \geq 2), S = {a, a⁻¹, b, b⁻¹, a²b^j, a²b^{-j}} (1 < j < $\frac{2m-1}{2}$). (35): G = $Z_4 \times Z_m = \langle a \rangle \times \langle b \rangle$ (m ≥ 5), S = {a, a⁻¹, b, b⁻¹, b^j, b^{-j}} (1 < j < $\frac{m}{2}$), when m \neq 2k, 5 or m = 2k (k \pi 3, k \neq 5), j \neq k - 1 or m = 10, $j \neq 3$. (36): $G = Z_{2m} = \langle a \rangle$ (m ≥ 4), $S = \{a, a^{-1}, a^{j}, a^{-j}, a^{m+1}, a^{m-1}\}\ (2 \le j \le m-2),$ when $(m, j) = 1$ or $(m, j) = 2, m \ne 4i + 2$ $(i \ge 1)$. (37): $G = Z_2 \times Z_m = \langle a \rangle \times \langle b \rangle$ (m ≥ 5 ,m $\neq 8$), $S_1 = \{ab, ab^{-1}, b, b^{-1}, b^j, b^{-j}\},$ S₂= {ab, ab⁻¹, b, b⁻¹, ab^j, ab^{-j}} (2 ≤ j < $\frac{m}{2}$), when $(m, j) = p \leq 2$. (38): $G = Z_2 \times Z_8 = \langle a \rangle \times \langle b \rangle$, $S_1 = \{ab, ab^7, b, b^7, b^2, b^6\},\$ $S_2 = \{ab, ab^7, b, b^7, ab^2, ab^6\}.$ (39): $G = Z_m = \langle a \rangle (m \ge 9, m \ne 14),$ S = {a, a⁻¹, a³, a⁻³, a^j, a^{-j}} j $\neq 3, 2 \le j < \frac{m}{2}$) when $m \neq 6k$, \forall j or $m = 6k$, j $\neq 3k - 1$. (40): $G = Z_{14} = \langle a \rangle$, $S = \{a, a^{-1}, a^3, a^{-3}, a^j, a^{-j}\}\$ for $j = 2, 4, 6$. (41): $G = Z_m = \langle a \rangle$ (m \geq 7), S = {a, a⁻¹, a^{3j}, a^{-3j}, a^j, a^{-j}}, (2 ≤ j < $\frac{m}{2}$, 3j ≢ 0, 1, m – 1, j, m – j, $\frac{m}{2}$ (mod m)), when m ≠ 7, 14, 6k $(k \ge 2)$ and m = 7; j = 2 or m = 14; j = 2, 3, 4, 6 or m = $6k$; j ≠ 3k – 1. (42): $G = Z_m = \langle a \rangle$ (m $\geq 8, m \neq 14$), $S = \{a, a^{-1}, a^{2+j}, a^{-2-j}, a^j, a^{-j}\}\$ (if $m = 2k$ then $2 \le j \le k$ m $\frac{m}{2}$ -3 and if m = 2k +1 then 2 $\leq j \leq \frac{m}{2}$ -1). When m \neq 3k for every j and when m = 3k, for k odd ; $j \neq k - 1$ and for k even ; $j \neq k-1$, $3\frac{k}{2} - 3$.

(43): $G = Z_{14} = \langle a \rangle$, $S = \{a, a^{-1}, a^{2+j}, a^{-2-j}, a^{j}, a^{-j}\}\$ for $j = 2, 4$. (44): $G = Z_2 \times Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m \geq 3), $S = \{a, ab^2c^m, b, b^{-1}, c, c^{-1}\}.$

Now we are in a position to prove Theorem 1.1. Immediately from Lemma 2.3, [5, Theorem 1.1] and [6, Theorem 1.2], we have the Cases $(1)-(32)$ of Theorem 1.1. Assume that Γ is not normal. In view of Proposition 2.2, we have the following assumption: \exists s, t, u, v \in S such that st = ub \neq 1 but $\{s, t\} \neq \{u, v\}$ v}. (*).

We divide S into four cases:

Case 1: $S = \{a, b, c, d, e, f\}$, where a, b, c, d, e, f are involutions. In this case G is an elementary abelian 2 group and a, b, c, d, e, f are not independent by the assumption (*). Consequently $G = Z_2^3$ or $G = Z_2^4$ or G $=$ \mathbb{Z}_2^5 . If $G = \mathbb{Z}_2^3 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ by the assumption (*) we can let $S = \{a, b, c, ab, ac, abc\}$. We have $\sigma =$ $(a, abc) \in A_1$, but $\sigma \notin Aut(G, S)$; and by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (33) of Theorem 1.1. If $G = Z_4^2 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$ by the assumption $(*)$ we see that S is one of the following cases: (i) S_1 = {a, b, c, d, abc, abd}, (ii) S_2 = {a, b, c, d, ab, abc},

(iii) $S_3 = \{a, b, c, d, abc, abc\}.$

When $S = S_1$, $\sigma = (a, b) \in A_1$, but $\sigma \notin Aut(G, S)$; by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (34) of Theorem 1.1. When $S = S_2$, we have the Case (22) of the main theorem. Also when $S = S_3$, Γ is normal by Lemma 3.3. If $G = Z_2^5 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ \times <d> \times <e> we can let S = {a, b, c, d, e, abc} and hence Γ = Cay (G, S) is non-normal, the Case (1) of Theorem 1.1. **Case 2**: $S = \{a, b, c, d, e, e^{-1}\}\$, where a, b, c, d are

involutions but e is not. In this case, $S^2 - 1 = \{ab, ac, ad,$ ae, ae⁻¹, bc, bd, be, be⁻¹, cd, ce, ce⁻¹, de, de⁻¹, e², e⁻²}. By the assumption (*) $d = abc$, $o(e) = 4$ or $d = e³$. Suppose d = abc. Then $G = Z_2^2 \times Z_{2m}$, (m \geq 2) or

$$
G = \mathbf{Z}_2^3 \times \mathbf{Z}_m, \, (m \geq 3).
$$

If $G = \mathbb{Z}_2^2 \times \mathbb{Z}_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, $(m \ge 2)$, we can let

 $S = \{a, b, ac^m, bc^m, c, c^{-1}\}\$ or

 $S = \{a, b, c^m, abc^m, c, c^{-1}\}.$

When $S = \{a, b, ac^m, bc^m, c, c^{-1}\},$

 $\sigma = (ab, abc^m)(abc, abc^{m+1})...(abc^{m-1}, abc^{2m-1}) \in A_1$ but σ \notin Aut(G, S); by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (35) of the main theorem.

When S = {a, b, c^m, abc^m, c, c⁻¹}, Γ = Cay(G, S) is normal by Lemma 3.3(3). If $G = Z_2^3 \times Z_m = \langle a \rangle \times \langle b \rangle$ $\times \times$, (m ≥ 3), S = {a, b, c, abc, d, d⁻¹}, the Case (2) of Theorem 1.1. Suppose $o(e) = 4$. Then $G =$

 $Z_2^2 \times Z_4$, $Z_2^3 \times Z_4$ or $Z_2^4 \times Z_4$. If $G = Z_2^2 \times Z_4 = \langle a \rangle \times$ × <c>, we have S is one of the following cases: $S_1 = \{a, b, ab, ac^2, c, c^{-1}\}, S_2 = \{a, b, ae^2, bc^2, c, c^{-1}\},$ $S_3 = \{a, b, ac^2, abc^2, c, c^{-1}\}.$ S_4 = {a, b, ab, c², c, c⁻¹}, S_5 = {a, b, ac², c², c, c⁻¹}, S_6 = {a, b, abc², c², c, c⁻¹}.

When $S = S_1$, $\sigma = (ac^2, c)(ac, c^2)(bc, abc^2)(abc, bc^2) \in$ A₁, but $\sigma \notin Aut(G, S)$; by Proposition 2.1, $\Gamma = Cay(G, S)$ S) is not normal, the Case $(36 - S_1)$ of Theorem 1.1. When $S = S_2$, by Proposition 2.1, $\Gamma = Cay(G, S)$ is not normal, the Case $(35, m = 2)$ of Theorem 1.1. When S = S₃, σ = (a, c)(ab, bc)(c², ac³)(bc³, abc³) ∈ A₁, but σ ∉ Aut(G, S); by Proposition 2.4, Γ = Cay(G, S) is not normal the Case $(36 - S_2)$ of Theorem 1.1. When S = S_4 , we have the Case (3) of Theorem 1.1. When $S = S_5$, we have the Case (23) of Theorem 1.1. When $S = S_6$, Γ is normal by Lemma 3.3 (3, m=2) .If $G = Z_2^3 \times Z_4 =$ $\langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$, we have S = {a, b, c, d, d⁻¹, u}, where $u = d^2$, ab, ad², abc, abd² or abcd². When $u =$ d^2 , we have the Case (5– S₁) of Theorem 1.1. When u $=$ ab, we have the Case (5 $-$ S₂) of Theorem 1.1. When $u = ad^2$, we have the Case $(5 - S_3)$ of Theorem 1.1. When $u = abc$, we have the Case (2) of Theorem 1.1. When $u = abd^2$, we have the Case (24) of Theorem 1.1. When $u = abcd^2$, $\sigma = (abcd^2, d)(bcd^2, ad)(acd^2,$ bd)(abd², cd) (abcd, d^2)(cd², abd)(bd², acd) and (bcd, ad²) \in A₁, but $\sigma \notin$ Aut(G, S); by Proposition 2.1, Γ = Cay (G, S) is not normal, the Case (37) of Theorem 1.1. If $G = Z_2^4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle \times \langle e \rangle$, $S = \{a, b, c, d, c\}$ e, e^{-1} }, we have the Case (4) of Theorem 1.1. Now suppose $d = e^3$. Then $G = \mathbb{Z}_2^2 \times \mathbb{Z}_6$ or $G = \mathbb{Z}_2^3 \times \mathbb{Z}_6$. If G $= Z_2^2 \times Z_6 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, we see that S is one of the following cases: $S_1 = \{a, b, ab, c^3, c, c^{-1}\}, S_2 = \{a, b, c^2, c^2, c^3, c^2, c^3, c^2, c^3, c^2, c^3, c^2, c^3, c^3, c^2, c^3, c^3, c^2, c^3, c^3, c^3, c^2, c^3, c^3, c^3, c^2, c^3, c^3, c^3, c^3, c^2, c^3, c^3, c^3, c^2, c^3, c^3, c^3, c^2, c^3, c^3, c^2, c^3, c^$ ac^3 , c³, c, c⁻¹}, S₃= {a, b, abc³, c³, c, c⁻¹}. 2 When $S = S_1$, we have the Case (6) of Theorem 1.1. For S_2 and S_3 , we have the Cases (2) and (3, m = 3) of Lemma 3.3 respectively. If $G = Z_2^3 \times Z_6 =$

 $\langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$, then S = {a, b, c, d³, d, d⁻¹}, the Case (7) of Theorem 1.1.

Case 3: S = {a, b, c, c⁻¹, d, d⁻¹}, where a, b are involutions but c, d are not. By the assumption (*) and the symmetry of c, c^{-1} , d and d^{-1} , we have five sub cases (I) $a = c^3$, (II) $a = c^2d$, (III) $o(c) = 4$, (IV) $c^3 = d$ and (V) $c^2 = d^2$. Suppose $a = c^3$, then G is isomorphic to one of the following: $Z_2 \times Z_{6m}$ (m≥ 2), $Z_2 \times Z_6$, $Z_6 \times Z_7$ Z_{2m} (m≥ 2), $Z_2^2 \times Z_{3m}$ (m≥ 1), $Z_2 \times Z_6 \times Z_m$ (m≥ 3). If $Z_2 \times Z_{6m} = \langle a \rangle \times \langle b \rangle$, (m \pm 2), we see that S is one of the following cases:

 S_1 = {a, \overline{b}^{3m} , ab^{2m}, ab^{4m}, b, b⁻¹}, S₂ = {a, ab^{3m}, ab^m, ab^{5m}, b, b^{-1} }, S₃= {a, b^{3m} , b^{m} , b^{5m} , b , b^{-1} }. When S = S₁, σ = (a, ab^{2m} , ab^{4m})(ab, ab^{2m+1} , ab^{4m+1})...(ab^{2m-1} , $ab^{4m-1}, ab^{6m-1}) \in A_1$, but $\sigma \notin Aut(G, S)$; by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (38) of the main theorem. For the Cases $S = S_2$ and $S =$ S_3 , we have the Cases (4) and (5) of Lemma 3.3. If G $= Z_2 \times Z_6 = \langle a \rangle \times \langle b \rangle$, we see that S is one of the following cases:

$$
S_1 = \{a, b^3, ab^2, ab^4, b, b^{-1}\}, S_2 = \{a, b^3, b, b^{-1}, b^2, b^4\},
$$

\n
$$
S_3 = \{a, b^3, b, b^{-1}, ab, ab^{-1}\}.
$$

When $S = S_1$, $\sigma = (a, ab^2, ab^4)(ab, ab^3, ab^5) \in A_1$, but σ \notin Aut(G, S); by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case $(43 - S_5)$ of Theorem 1.1. When S = S_2 , we have the Case (29, m=3) of Theorem 1.1. When S = S₃, $\sigma = (b^5, ab^5)(b^2, ab^2) \in A_1$, but $\sigma \notin Aut(G, S)$; by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (43 – S₁) of Theorem 1.1. If G = $Z_6 \times Z_{2m} = \langle a \rangle \times$, we see that S is one of the following cases:

 $S_1 = \{a^3, b^m, a, a^{-1}, b, b^{-1}\}, S_2 = \{a^3, a^3b^m, a, a^{-1}, b, b^{-1}\}.$ When S =, by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (8) of Theorem 1.1. For S = S₂, when m = 2, $\sigma = (b^2, a^3b)(ab^2, a^4b)(a^2b^2,$ $a^{5}b$)($a^{3}b^{2}$, b) ($a^{4}b^{2}$, ab)($a^{5}b^{2}$, $a^{2}b$) \in A₁, but $\sigma \notin$ Aut(G, S); Γ = Cay(G, S) is not normal, the Case (40, m=3) of Theorem 1.1, and when m≥ 3, Γ = Cay(G, S) is normal by Lemma 3.3(6). If $G = Z_2^2 \times Z_{3m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ $(m≥ 1)$, S = {a, b, ac^m, ac^{2m}, c, c^{−1}}. Then we obtain the Case (25) of Theorem 1.1. If $G = Z_2 \times Z_6 \times Z_m =$ $\langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m ≥ 3), S = {b³, a, b, b⁻¹, c, c⁻¹}. Then we obtain the Case (9) of Theorem 1.1. Suppose a = c 2 d. Then we have one of the following cases: (1): $G = Z_2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ (m\le 3), $S = \{a, b^m, b, b^{-1}, ab^{-2}, ab^2\}.$

(2): $G = Z_2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$, S_1 = {ab^m, a, b, b⁻¹, ab^{m-2}, ab^{m+2}} (m≥ 3), S_2 = { b^m , a, b, b^{-1} , b^{m-2} , b^{m+2} }, m≥ 4,

(3): $G = Z_2 \times Z_{4m+2} = \langle a \rangle \times \langle b \rangle$, $S_1 = \{a, b, b^{-1}, b^{2m+1}, ab^m, ab^{3m+2}\}$ (m ≥ 1), S_2 = {a, b, b⁻¹, b^{2m+1}, b^m, b^{3m+2}}, m≥ 2 S_3 = {a, b, b⁻¹, b^{2m+1}, b^{3m+1}, b^{m+1}} (m≥ 1), S_4 = {a, b^{2m+1}, ab^{3m+1}, ab^{m+1}, b, b⁻¹}, m≥ 1,

(4): $G = Z_4 \times Z_{4m+2} = \langle a \rangle \times \langle b \rangle$, $S_1 = \{a^2b^{2m+1}, b^{2m+1}, ab^m, a^3b^{3m+2}, b, b^{-1}\}, m \ge 1$ $S_2 = \{a^{2b2m+1}, a^2, ab^m, a^3b^{3m+2}, b, b^{-1}\}, m \ge 1.$

(5): G =
$$
\mathbb{Z}_2^2
$$
 × \mathbb{Z}_m = $\langle a \rangle$ × $\langle b \rangle$ × $\langle c \rangle$ (m \geq 3),
S = {a, b, c, c⁻¹, ac⁻², ac²}.

(6): $G = Z_2 \times Z_4 \times Z_{4m+2} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m\le 1), $S = \{a, b^2c^{2m+1}, bc^m, b^{-1}c^{-m}, c, c^{-1}\}.$

(7): $G = Z_2^2 \times Z_{4m+2} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m\le 1), $S = \{a, c^{2m+1}, bc^m, bc^{-m}, c, c^{-1}\}.$

In the Case (1), when m = 3, $\sigma = (b^2, b^4) \in A_1$, but σ \notin Aut(G, S); by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case $(43 - S_5, m = 3)$ of Theorem 1.1. When m≥ 4, Γ is normal by Lemma 3.3(7– S₁). In the Case (2), $S = S_1$ when $m = 3$, $\sigma = (b^2, ab^2)(b^5,$ ab⁵) \in A₁, but $\sigma \notin$ Aut(G, S); by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case $(43 - S_2)$ of Theorem 1.1.

When m = 4, $\sigma = (b, b^7)(b^2, b^6)(b^3, b^7) \in A_1$, but $\sigma \notin$ Aut(G, S); by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case 39 (m = 2) of Theorem 1.1. When m≥ 5, Γ = Cay(G, S) is normal by Lemma 3.3 (7– S₂). In the Case (2), $S = S_2$, when $m = 5$, we have the Case (26) of Theorem 1.1. When $m \ge 6$, Γ is normal by Lemma 3.3 (7– S₃).

In the Case (3), $S = S_1$, when $m = 1$, we have the Case $(43 - S_1)$ of Theorem 1.1. When m≥ 2, Γ is normal by Lemma 3.3 (8 – S₁). In the Case (3), $S = S_2$, Γ is normal by Lemma 3.3 (8 – S₂). In the Case (3), $S = S_3$, when $m = 1$, 2, we have the Cases (29, $m = 3$, 5) of Theorem 1.1 respectively. When $m \geq 3$, Γ is normal by Lemma 3.3(8 – S₄). In the Case (3), S = S₄, when m= 1, $\sigma = (ab, ab^5) \in A_1$, but $\sigma \notin Aut(G, S)$; by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (29,m = 3) of Theorem 1.1. When m \geq 2, Γ = Cay (G, S) is normal by Lemma 3.3(8 – S₃). In the Case (4), Γ $=$ Cay (G, S) is normal by Lemma 3.3(9). In the Case (5), when $m = 3$, 6, by Proposition 2.1, Γ is not normal, the Case (25, m = 1, 2) of Theorem 1.1. Otherwise Γ is normal by Lemma 3.3(10). In the Case (6), Γ is normal by Lemma 3.3(16). In the Case (7), when $m = 1$, by Proposition 2.1, Γ is not normal, the Case 27 (m = 1) of Theorem 1.1. When $m \ge 2$, Γ is normal by Lemma 3.3 (17). Suppose $o(c) = 4$. Then we have one of the following cases:

(I) $G = Z_2 \times Z_4 = \langle a \rangle \times \langle b \rangle$, $S_1 = \{a, b^2, b, b^{-1}, ab,$ $ab^{-1}\},\,$

(II) $G = Z_2 \times Z_{4m} = \langle a \rangle \times \langle b \rangle$, $S_1 = \{a, b^{2m}, ab^m, ab^{3m},$ b, b⁻¹}, (m≥ 2), S₂={a, ab^{2m}, ab^m, ab^{3m}, b, b⁻¹}, (m≥ 1), $S_3 = \{a, b^{2m}, b^m, b^{3m}, b, b^{-1}\}, (m \ge 2),$ S_4 = {a, ab^{2m}, b^m, b^{3m}, b, b⁻¹}, (m≥ 2).

(III) $G = Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ (m\le 2), $S_1 = \{a^2, b^m, a, a^{-1}, b, b^{-1}\}, S_2 =$ ${a², a²b^m, a, a⁻¹, b, b⁻¹}, S₃ = {a²b^m, b^m, a, a⁻¹, b, b⁻¹}.$

(IV):
$$
G = \mathbb{Z}_2^2 \times \mathbb{Z}_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle
$$
,
\n $S_1 = \{a, b, c, c^{-1}, ac, ac^{-1}\}, S_2 = \{a, b, c, c^{-1}, abc, abc^{-1}\}.$
\n(V): $G = \mathbb{Z}_2^2 \times \mathbb{Z}_{4m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m ≥ 2),
\n $S_1 = \{a, b, abc^m, abc^{3m}, c, c^{-1}\}, S_2 = \{a, b, ac^m, ac^{3m}, c, c^{-1}\}, S_3 = \{a, b, c^m, c^{3m}, c, c^{-1}\}.$

(VI): $G = Z_2 \times Z_4 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m\le 3), $S_1 = \{a, b^2, b, b^{-1}, c, c^{-1}\},$ $S_2 = \{a, ab^2, b, b^{-1}, c, c^{-1}\}.$

(VII): $G = Z_2 \times Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m ≥ 2), S_1 = {a, c^m, b, b⁻¹, c, c⁻¹}, S₂ = {a, ac^m, b, b⁻¹ $, c, c^{-1}\},$ $S_3 = \{a, b^2c^m, b, b^{-1}, c, c^{-1}\}, S_4 = \{a, ab^2c^m, b, b^{-1}, c,$ c^{-1} .

(VIII):
$$
G = \mathbb{Z}_2^2 \times \mathbb{Z}_{4m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle
$$
 (m>1),
\n $S_1 = \{a, c^{2m}, bc^m, bc^{3m}, c, c^{-1}\},$
\n $S_2 = \{a, ac^{2m}, bc^m, bc^{3m}, c, c^{1}\}.$

(IX): $G = Z_2^2 \times Z_4 \times Z_4 \times \text{ and } Z_6 \times Z_7 \times \text{ and } Z_8 \times Z_8 \times \text{ and } Z_9 \times Z_9 \times Z_9 \times \text{ and } Z_9 \times$ $S = \{a, b, c, c^{-1}, d, d^{-1}\}.$

(X): G =
$$
\mathbb{Z}_2^3 \times \mathbb{Z}_{4m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle
$$
 (m>1),
S = {a, b, cd^m, cd^{3m}, d, d⁻¹}.

In the Case (I), $\sigma = (ab, b^3) \in A_1$, but $\sigma \notin Aut(G, S)$; by Proposition 2.1, $\Gamma = \text{Cav}(G, S)$ is not normal, the Case (43 – S_1) of Theorem 1.1. In the Case (II), $S = S_1$, Γ = Cay(G, S) is normal by Lemma 3.3(11 – S₁). In the Case (II), $S = S_2$, $\sigma = (b, b^{-1})(b^2, b^{-2})... (b^{2m-1}, b^{2m+1})(a,$ $\lim_{\alpha \to 0}$ (h, $\lim_{n \to \infty}$ (a) $\lim_{n \to \infty}$ (b, b) (c, b) (c, b) (c, d) (c, b) (c, d) (c, Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (39) of Theorem 1.1. In the Case (II), $S = S_3$, and $S =$ S₄, Γ is normal by Lemma 3.3, the Case (11 – S₂, S₃). In the Case (III), when $S = S_1$, we have the Case (10) of Theorem 1.1. When $S = S_2$, $m = 2$, $\sigma = (a^2b^2, b)(a^3b^2)$, ab)(ab^2 , a^3b)(b^2 , a^2b) \in A₁, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (40, m = 2) of Theorem 1.1. When $S = S_2$, m ≥ 3 , $\Gamma =$ Cay(G, S) is normal by Lemma 3.3(12). When $S = S_3$, $\sigma = (a^2, ab^m)(a^2b, ab^{m+1})...(a^2b^{2m-1}, ab^{m+(2m-1)}) \in A_1$ but σ ∉ Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not normal , the Case (40) of Theorem 1.1.

In the Case (IV), when $S = S_1$, $\sigma = (c^2, ac^2)(bc^2, abc^2)$ $∈$ A₁,but $σ$ ∉ Aut(G, S), by Proposition 2.1, $Γ$ = Cay(G, S) is not normal, the Case $(44-S_2)$ of Theorem 1.1. When $S = S_2$, $\sigma = (ac^2, bc^2) \in A_1$, but $\sigma \notin Aut(G)$, S), by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (44− S₃) of Theorem 1.1. In the Case (V), $S = S_1$, when $m = 1$, with an argument similar to the Case (IV $- S_2$) we obtain the same result. When m≥ 2, Γ is normal by Lemma 3.3 (13− S₁). In the Case (V), S = S_2 , when $m = 1$, with an argument similar to the Case $(IV-S₁)$, we obtain the same result.

When m≥ 2, Γ is normal by Lemma 3.3 (13 – S₂). In the Case (V), $S = S_3$, Γ is normal by Lemma 3.3(13− S_3). In the Case (VI), we have the Case (11) of Theorem 1.1. In the Case (VII), $S = S_1$, $S = S_3$ and $S =$ S₂ (m = 2), we have the Cases (12), (28) and (11 – S₂, $m = 4$) of Theorem 1.1 respectively. In the Case (VII), $S = S_2$, $m \geq 3$, Γ is normal by Lemma 3.3(18). In the Case (VII), $S = S_4$, for $m = 2$, $\sigma = (b^3, c)(ab^3, ac)(abc^2)$, ab^2c^3 $(b^2, bc)(b^3c^3, c^2)(b^2c, b^2c^3)(ab^2, abc)(ab^3c^3, ac^2)$ $∈$ A₁, but $σ$ ∉ Aut(G, S), by Proposition 2.1, $Γ$ = $Cav(G, S)$ is not normal, the Case (57) of Theorem 1.1, and for $m \geq 3$, Γ is normal by Lemma 3.3(44). In the Case (VIII), $S = S_1$ when $m = 1$, we have the Case (21, m = 2) of Theorem 1.1. If m 2 2, Γ is normal by Lemma 3.3 (13 – S₄). In the Case (VIII), S = S₂, σ = $(ab, abc^{2m})(abc, abc^{2m+1})...(abc^{2m-1}, abc^{4m-1}) ∈ A₁, but$ σ ∉ Aut(G, S); by Proposition 2.1 ,Γ = Cay(G, S) is not normal, the Case (41) of Theorem 1.1. In the Case

(IX), we have the Case (13) of Theorem 1.1. In the Case (X) , $m = 1$, we have the Case (14) of Theorem 1.1, and for m≥ 2, Γ = Cay (G, S) is normal by Lemma 3.3(14). Suppose $c^3 = d$, then G= $Z_2^2 \times Z_{2m}$, (m
24) or $G = Z_2^2 \times Z_m \text{ (m>5, m \neq 6). If } G = Z_2 \times Z_{2m} = \text{} \times$ **(m** \ge **4), we can let S to be** $S_1 = \{a, b^m, b, b^-1, b^3, b^{-3}\}\$ or $S_2 = \{a, ab^m, b, b^{-1}, b^3, b^{-1}\}$ b^{-3} }. Let S = S₁, for m = 4, 5 we have the Cases (29), (26) of Theorem1.1 respectively, and for m \geq 6, Γ is normal by Lemma $3.3(19 - S_1)$. Let S = S₂. When m = 4, $\sigma = (ab^2, ab^6) \in A_1$, but $\sigma \notin Aut(G, S)$; by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case

(43– S₄), m = 4) of Theorem 1.1. When m = 5, $\sigma = (b^3, b^3)$ b^7)(ab³, ab⁷)(b², b⁸)(ab², ab⁸) ∈ A₁, but σ ∉ Aut(G, S), by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (42) of Theorem 1.1. When m≥ 6, Γ = Cay (G, S) is normal by Lemma 3.3(19 – S₂). If $G = Z_2^2 \times Z_m =$ $\langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m ≥ 5 , m $6 = 6$), S = {a, b, c, c⁻¹, c³, c^{-3} }. When m = 5, 10 and m = 8 we have the Cases (15), and (16) of Theorem 1.1 respectively. When $m =$ 7, 9, m \geq 11, Γ = Cay (G, S) is normal by Lemma 3.3(15). Suppose $c^2 = d^2$, then $G = Z_2 \times Z_{2m}$, $G = Z_2^2 \times Z_{2m}$ Z_{2m} (m≥ 3) $G = Z_2^2 \times Z_{2m-1}$ (m≥ 2) or $G = Z_2^2 \times Z_m$ (m\le 3). If G= $Z_2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ we see that S is one of the following cases:

- 1) S₁= {a, b^m, b, b⁻¹, ab, ab⁻¹}, m≥ 2,
- 2) S₂= {a, ab^m, b, b⁻¹, ab, ab⁻¹}, m ≥ 2, $3)S_3 = \{a, b^m, b, b^{-1}, b^{m+1}, b^{m-1}\}, m \ge 3,$ 4) S₄= {a, ab^m, b, b⁻¹, b^{m+1}, b^{m-1}}, m≥ 3, 5) S₅={a, b^m, b, b⁻¹, ab^{m+1}, ab^{m-1}}, m≥ 3, 6) S₆= {a, ab^m, b, b⁻¹, ab^{m+1}, ab^{m-1}}, m≥ 3, 7) S_7 = {ab^m, b^m, b, b⁻¹, ab, ab⁻¹}, m ≥ 2,
- 8) $S_8 = \{ab^m, b^m, b, b^{-1}, ab^{m+1}, ab^{m-1}\}, m \geq 2$.

In the Case (1), m \geq 2, when m = 2i, $\sigma = (b^i, ab^i)(b^{3i},$ ab³ⁱ) \in A₁, but $\sigma \notin$ Aut(G, S) and when m = 2i + 1, σ = (bⁱ⁺¹, abⁱ⁺¹)(b³ⁱ⁺², ab³ⁱ⁺²) ∈ A₁, but $\sigma \notin$ Aut(G, S); by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case $(43 - S₁)$ of Theorem 1.1. In the Case (2), similarly Case (1), Γ = Cay(G, S) is not normal, the Case (43– $S₂$) of Theorem 1.1. In the Case (3), we have the Case (29) of Theorem 1.1. In the Case (4), when m = $2i$, σ = $(ab^i, ab^{3i}) \in A_1$, but $\sigma \notin Aut(G, S)$ and when $m = 2i +$ 1, $\sigma = (ab^{i+1}, ab^{3i+2}) \in A_1$, but $\sigma \notin Aut(G, S)$, by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case $(43 - S_4)$ of Theorem 1.1. In the Case (5), when m = $2i, \sigma = (b^{3i}, ab^i) \in A_1$, but $\sigma \notin Aut(G, S)$ and when m = 2i+1, $\sigma = (b^{i+1}, ab^{3i+2}) \in A_1$, but $\sigma \notin Aut(G, S)$, by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (43− S₅) of Theorem 1.1. In the Case (6), when m = 2i, $\sigma = (b^i, ab^{3i})(b^{3i}, ab^i) \in A_1$, but $\sigma \notin Aut(G, S)$ and when m = 2i + 1, $\sigma = (b^{i+1}, ab^{3i+2})(b^{3i+2}, ab^{i+1}) \in A_1$,

but σ ∉ Aut(G, S). Hence by Proposition 2.1, Γ = Cay (G, S) is not normal, the Case $(43 - S_6)$ of Theorem 1.1.

In the Case (7), for m = 2i and m = $2i + 1$, $\sigma = (b^{i+1})$, abⁱ⁺¹) \in A₁, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, Γ = Cay (G, S) is not normal, the Case $(43 - S_3)$ of Theorem 1.1. In the Case (8), for $m = 2i$ and $m = 2i$ – 1, $\sigma = (b^i, ab^{i+m})(b^{m+i}, ab^i) \in A_1$, but $\sigma \notin Aut(G, S)$, by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (43 – S₁) of Theorem 1.1. If G = $Z_2^2 \times Z_{2m} = \langle a \rangle$ \times
 \times < \times \times , we can let S to be one of the following cases: 2 (1): $S_1 = \{a, b, c, c^{-1}, ac, ac^{-1}\}, m \ge 2$,

(2): $S_2 = \{a, b, c, c^{-1}, abc, abc^{-1}\}, m \ge 2$, (3): $S_3 = \{a, b, c, c^{-1}, c^{m+1}, c^{m-1}\}, m \ge 3$, (4): $S_4 = \{a, b, c, c^{-1}, ac^{m+1}, ac^{m-1}\}, m \ge 2$, (5): S_5 = {a, b, c, c⁻¹, abc^{m+1}, abc^{m-1}}, m ≥ 2, (6): S_6 = {a, cm, c, c⁻¹, bc, b c⁻¹}, m \geq 2, (7): $S_7 = \{a, ac^m, c, c^{-1}, bc, bc^{-1}\}, m \ge 2$, (8) : S₈ = {a, c^m, c, c⁻¹, bc^{m+1}, bc^{m-1}}, m≥ 2, (9): $S_9 = \{a, ac^m, c, c^{-1}, bc^{m+1}, bc^{m-1}\}, m \ge 2$. In the Case (1), Γ is not normal, the Case (30) of Theorem 1.1. In the Case (2) , $\sigma = (ac^{m-1}, bc^{m-1}) \in A_1$, but $\sigma \notin Aut(G, S)$, by Proposition 2.1, $\Gamma = Cay(G, S)$ is not normal, the Case $(44 - S_1)$ of Theorem 1.1. In the Case (3), when $m = 2i$, $\Gamma = Cay (G, S)$ is not normal, the Case (16) of Theorem 1.1. When $m = 2i+1$, $\Gamma = Cay(G, S)$ is not normal, we have the Case 14 (with m odd) of Theorem 1.1. In the Case (4), when m = 2i, i ≥ 2 , $\sigma = (c^i, ac^{3i})(ac^i, c^{3i})(bc^i,$ abc³ⁱ)(abcⁱ, bc³ⁱ) \in A₁, but $\sigma \notin$ Aut(G, S), and when m $=2i+1$, $\sigma = (c^{i+1}, ac^{3i+2})(ac^{i+1}, c^{3i+2})(bc^{i+1}, abc^{3i+2})(abc^{i+1},$ bc³ⁱ⁺²) \in A₁, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, Γ $= Cay(G, S)$ is not normal, the Case (44 – S₂) of Theorem 1.1. In the Case (5), when m = 2i, i ≥ 2 , σ = $(c^{3i}, abc^i)(ac^{3i}, bc^i)(bc^{3i}, ac^i)(abc^{3i}, c^i) \in A_1$, but $\sigma \notin$ Aut(G, S) and when m = 2i + 1, $\sigma = (c^{3i+2}, abc^{i+1})$ $(ac^{3i+2}, bc^{i+1})(bc^{3i+2}, ac^{i+1})$ $(abc^{3i+2}, c^{i+1}) \in A_1$, but $\sigma \notin$ Aut(G, S); by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case $(44 - S_3)$ of Theorem 1.1. In the Case (6), m \geq 2, Γ is not normal, we have the Case (27) of Theorem 1.1. In the Case (7), if m≥ 3, for m = 2i and m $= 2i - 1$, $\sigma = (ci, bci)(aci, abci)(ci+m, bci+m)$ (aci+m, abci+m) \in A₁, but $\sigma \notin$ Aut(G, S), and if m = 2, σ = (b, bc²)(ab, abc²) \in A₁, but $\sigma \notin$ Aut(G, S). Then by Proposition 2.1, Γ = Cay (G, S) is not normal, the Case $(44 - S_4)$ of Theorem 1.1. In the Case (8), for m = 2i and m = 2i–1, $\sigma = (c^i, bc^{i+m})(ac^i, abc^{i+m})(c^{i+m}, bc^i)(ac^{i+m},$

abcⁱ) \in A₁, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case $(44 - S_5)$ of Theorem 1.1. In the Case (9), similarly Case (8), Γ = Cay(G, S) is not normal . We have the Case $(44 - S_6)$ of Theorem 1.1.

If $G = Z_2^2 \times Z_{2m-1} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, (m \plane 2), then S is S_1 = {a, b, c, c⁻¹, ac, ac⁻¹} or S_2 = {a, b, c, c⁻¹, abc,

abc⁻¹}. When $S = S_1$, $\sigma = (cm, acm)(bcm, abcm) \in A_1$, but $\sigma \notin Aut(G, S)$, by Proposition 2.1, $\Gamma = Cay(G, S)$ is not normal, the Case $(44-S_7)$ of the main theorem.

When $S = S_2$, $\sigma = (ac^{m-1}, bc^{m-1}) \in A_1$, but $\sigma \notin Aut(G)$, S), by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (44– S₁) of Theorem 1.1. If $G = Z_2^2 \times Z_m =$ $\langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$, we can consider m ≥ 3 , S = {a, b, d, d^{-1} , cd, cd⁻¹}. In this case for m = 2i and m = 2i-1, $(i\geq 2)$ $\sigma = (d^i, cd^i)(ad^i, acd^i)(bd^ibcd^i)(abd^i, abcd^i) \in A_1$, but σ \notin Aut(G, S) and by Proposition 2.1, Γ = Cay(G, S) is not normal the Case (14) of Theorem 1.1.

Case 4: $S = \{a, a^{-1}, b, b^{-1}, c, c^{-1}\}$, where the elements of the set S are not involution By the assumption (*), $o(a) = 4$, $a^2 = b^2$, $a^3 = b$ or $c = a^2b$. Suppose $o(a) = 4$, then G is isomorphic to one of the following: Z_{4m} (m≥ 2), $Z_4 \times Z_m$, $Z_{4m} \times Z_n$ (m≥ 2, n≥3), $Z_{4m} \times Z_{4n}$ (m≥ 1, n≥1), $Z_4 \times Z_m \times Z_n$ (m, n≥3). If G = Z_{4m} = <a> (m≥ 2), we can let S = $\{a^m, a^{-m}, a, a^{-1}, a^j, a^{-j}\}$, where $1 \le j \le 2m$, $j \neq m$. When $j = 2m - 1$, $\sigma = (a^m, a^{-m}) \in A_1$, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (45) of Theorem 1.1. When $j \neq 2m$ – 1, Γ = Cay (G, S) is normal by Lemma 3.3(31). If G = $Z_4 \times Z_m = \langle a \rangle \times \langle b \rangle$, we can let S to be one of the following cases:

(1): $S_1 = \{a, a^3, b, b^{-1}, ab^j, a^3b^{-j}\}, m \ge 3, 1 \le j \le [m/2]$,

(2): $S_2 = \{a, a^3, b, b^{-1}, a^2b^j, a^2b^{-j}\},$ m≥ 2, $1 \le j \le (m/2)$,

(3): S₃= {a, a³, b, b⁻¹, b^j, b^{-j}}, m
$$
\ge
$$
 5, 1 < j < (m/2).

When S = S₁, for m = 2j, $\sigma = (a^2, a^2b^j)(a^2b,$ a^2b^{j+1} ... $(a^2b^{j-1}, a^2b^{2j-1}) \in A_1$, buto \notin Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (49) of the main theorem. Otherwise, Γ is normal by Lemma 3.3(32). When $S = S_2$, $j = 1$ for $m = 2k$ and $m =$ $2k - 1$, $k \ge 2$, $\sigma = (ab^k, a^3b^k) \in A_1$, but $\sigma \notin Aut(G, S)$, and when $j = k - 1, m = 2k$ ($k \ge 3$), $\sigma = (b^{k-1},$ $a^{2}b^{-1}$)(ab^{k-1} , $a^{3}b^{-1}$)($a^{2}b^{k-1}$, b^{-1})($a^{3}b^{k-1}$, ab^{-1}) $\in A_{1}$, but $\sigma \notin Aut(G, S)$, then these graphs are non-normal and we have the Cases (49, 50) of Theorem 1.1. Otherwise, Γ = Cay (G, S) is normal by Lemma 3.3 (33, 34). When $S = S_3$, for $j = k - 1$, $m = 2k$, if k is odd we have the Case (17) of Theorem 1.1 and if k is even we have the Case 19 ($m = 4$) of the main theorem. For $m = 5$; $j = 2$ and $m = 10$; $j = 3$ we have the Case 21(m = 4) of the main theorem.

Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3 (35). If $G = Z_{4m} \times Z_n = \langle a \rangle \times \langle b \rangle$ (m 2, n 23), S = ${a^m, a^{-m}, a, a⁻¹, b, b⁻¹},$ then $\Gamma = Cay(G, S)$ is normal by Lemma 3.3(20). If $G = Z_{4m} \times Z_{4n} = \langle a \rangle \times \langle b \rangle$ (m 1, n≥1), S = { $a^{m}b^{n}$, $a^{-m}b^{-n}$, a, a^{-1} , b, b^{-1} }, then Γ = Cay(G, S) is normal by Lemma 3.3(21). If $G = Z_4 \times Z_m$ \times Z_n = <a> \times \, zb> \times \, co \, m \, m \, n \, and \, and \, we can consider S = $\{a, a^3, b, b^{-1}, c, c^{-1}\}$. In this case, for m = 4, Γ = Cay (G, S) is not normal, the Case (18) of Theorem 1.1, and for m, $n \neq 4$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(22). Suppose $a^2 = b^2$. Then G is isomorphic to one of the following: Z_{2m} , $Z_2 \times Z_m$ (m≥ 5), $Z_{2m} \times Z_{2n+1}$, Z_{2m} $× Z_{2n}$ (m≥ 3, n≥2), Z_2 $× Z_n$ (m≥ 3, n≥3). If G = Z_{2m} = $\langle a \rangle$, we can let S to be S₁= {a^j, a^{-j}, a^{m+j}, a^{m-j}, a, a⁻¹},

 $2 \le j \le m/2$, $m \ge 5$, or $S_2 = \{a, a^{-1}, a^{m+1}, a^{m-1}, a^j, a^{-j}\}, 2 \le$ $j \le m - 2$, $m \ge 4$. When $S = S_1$, $\Gamma = Cay(G, S)$ is normal by Lemma 3.3(23). When $S = S_2$, (m, j) = 2, for m = 4i $+ 2$, j = 2i (with i odd) and j = 2i + 2 (with i even), σ $=(a^2, a^{2+m/2})$ ($a^6, a^{6+m/2}$)...($a^{2m-2}, a^{m/2}$ ⁻²) ∈ A₁, but σ ∉ Aut (G, S), and when $(m, j) = 1 > 2$, then $\sigma = (a^2,$ $(a^{m+2})(a^{2+1}, a^{m+2+1})...(a^{m+2-1}, a^{2-1}) \in A_1$, but $\sigma \notin$ Aut $(G,$ S), then by Proposition 2.1 these graphs are nonnormal, and we have the Case (46) of the main theorem. Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3 (36). If $G = Z_2 \times Z_m = \langle a \rangle \times \langle b \rangle$ m ≥ 5 , we can let S to be $S_1 = \{b, b^{-1}, ab, ab^{-1}, b^j, b^{-j}\},$ $2 \ge j$ > m/2 or S₂ = {b, b⁻¹, ab, ab⁻¹, ab^j, ab^{-j}}, 2 \ine j > m/2. Let $S = S_1$. When $(m, j) = p > 2$; $m = (t + 1)p$, $\sigma =$ $(b, ab)(b^{p+1}, ab^{p+1})...(bt^{p+1}, abt^{p+1}) \in A_1$, but $\sigma \notin Aut$ (G, S), by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not

normal, the Case $(47 - S_1)$ of the main theorem. When m = 8, j = 3, $\sigma = (b^2, b^6)(ab, a b^7)(a b^3, a b^5) \in$ A₁, but $\sigma \notin$ Aut (G, S), by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case $(48 - S_1)$ of Theorem 1.1. Otherwise, Γ = Cay(G, S) is normal by Lemma 3.3(37, 38− S₁). Let S = S₂. When $(m, j) = p > 2$; m = $(t + 1)p$, $\sigma = (b, ab)(b^{p+1}, ab^{p+1})... (b^{tp+1}, ab^{tp+1}) \in A_1$, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case $(47 - S_2)$ of Theorem 1.1. When m = 8, j = 3, σ =(b², b⁶)(b³, b⁵)(b, b⁷) ∈ A₁, but σ ∉ Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case $(48-S_2)$ of main theorem. Otherwise, Γ = Cay(G, S) is normal by Lemma 3.3(37, 38 – S₂). If $G = Z_{2m} \times Z_n = \langle a \rangle \times \langle b \rangle$, we can let S to be one of the following cases:

(1):
$$
S_1 = \{a, a^{-1}, a^{m-1}, a^{m-1}, b, b^{-1}\}, m \ge 3,
$$

(2): $S_2 = \{b, b^{-1}, a^m b, a^m b^{-1}, a, a^{-1}\}, m \ge 2$,

(3): $S_3 = \{b, b^{-1}, a^{m+1}b^1, a^{m-1}b^1, a, a^{-1}\}, n = 2l, l \ge 2.$

Let $S = S_1$. When $m = 2i$, $\Gamma = Cay(G, S)$ is not normal, the Case (19) of Theorem 1.1. When $m = 2i + 1$, $\sigma =$ (a^{m-1}, a^{2m-1}) $(a^{m-1}b, a^{2m-1}b)$ … $(a^{m-1}b^{n-1}, a^{2m-1}b^{n-1}) \in A_1$ but σ \notin Aut(G, S), by Proposition 2.4, Γ = Cay(G, S) is not normal, the Case 20 (with m odd) of Theorem 1.1. Let S = S_2 . When $n = 2j$, $2j - 1$ ($j \ge 2$), $\sigma = (b^j,$ $a^m b^j$)(ab^j, $a^{m+1} b^j$)...($a^{m-1} b^j$, $a^{2m-1} b^j$) ∈ A₁, but σ ∉ Aut(G, S), by Proposition 2.1, $\Gamma = \text{Cav}(G, S)$ is not normal, the Case (49) of Theorem 1.1. When $S = S_3$, σ = $(a^{m-1}, a^{-1}b^{l})$ $(a^{m-1}b, a^{-1}b^{l+1})$... $(a^{m-1}b^{2l-1}, a^{-1}b^{l-1}) \in$ A₁, but $\sigma \notin Aut(G, S)$, by Proposition 2.1, $\Gamma = Cay(G, S)$ S) is not normal, the Case (50) of Theorem 1.1. If G $=Z_2 \times Z_m \times Z_n = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, m ≥ 3 , n ≥ 3 , S = {b, b^{-1} , ab, ab⁻¹, c, c⁻¹}, we have the Case (20) of the main theorem. Suppose $a^3 = b$, then we have one of the following cases :

(1): $G = Z_m = \langle a \rangle$, $m \ge 7$, $S_1 = \{a, a^{-1}, a^3, a^{-3}, a^{j}, a^{-j}\},$ $(j\neq 3, 2 \le j \le m/2)$, $S_2 = \{ a^j, a^{-j}, a^{3j}, a^{-3j}, a, a^{-1} \}, (2 \le j \le m/2, 3j \ne 0,$ $1,m-1, j, m - j, m/2 (mod m)$).

(2): $G = Z_m \times Z_n = \langle a \rangle \times \langle b \rangle$, (n\pi 3, m\pi 5, m \neq 6), $S = \{a, a^{-1}, a^{3}, a^{-3}, b, b^{-1}\}.$

(3): $G = Z_{3m-1} \times Z_{3n} = \langle a \rangle \times \langle b \rangle$, (m $\geq 2, n \geq 1$),

 $S = \{a^m b^n, a^{2m-1} b^{2n}, a^3, a, a^{-1}, b, b^{-1}\}.$ (4): $G = Z_{3m+1} \times Z_{3n} = \langle a \rangle \times \langle b \rangle$, $(m, n \ge 1)$, $S =$ ${a^{2m+1}b^n, a^m b^{2n}, a, a^{-1}, b, b^{-1}}.$

In the Case (1), when m = 6k, j = 3k−1, k ≥ 2, σ = (a, a^{3k+1})(a^4 , a^{3k+4})...(a^{3k+2} , a^{6k+2}) \in A₁, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (51) of Theorem 1.1. In this case for S_1 , when m= 7, $j = 2$, $\sigma = (a^2, a^5) \in A_1$, but $\sigma \notin Aut(G, S)$, by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (52) of Theorem 1.1. When m = 8, j = 2, $\sigma = (a^2, a^6)$ \in A₁, but σ ∉ Aut(G, S), by Proposition 2.1, Γ = $Cay(G, S)$ is not normal, the Case (45) of the main theorem.

When m = 14; j = 5, $\sigma = (a^2, a^{12})(a^5, a^9) \in A_1$, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (52) of Theorem 1.1. Also for S_2 , when m = 7; j = 3, $\sigma = (a^3, a^4) \in A_1$, but $\sigma \notin Aut(G,$ S), by Proposition 2.1, Γ = Cay (G, S) is not normal, the Case (52) of Theorem 1.1. When m = 14; $j = 3, \sigma =$ (a^2, a^{12}) $(a^5, a^9) \in A_1$, but $\sigma \notin Aut(G, S)$, by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (52) of Theorem 1.1. Otherwise, $\Gamma = \text{Cav}$ (G, S) is normal by Lemma 3.3(39, 40, 41). In the Case (2), when $m = 5$, 10 and 8 we have the Cases (21) and (19, m = 2) of Theorem 1.1 respectively. Otherwise, Γ = Cay (G, S) is normal by Lemma 3.3 (24). In the Cases (3) and (4), Γ = Cay (G, S) is normal by Lemma 3.3 $(25, 26)$. Suppose $c = a²b$. Then we have one of the following cases:

(1): $G = Z_m = \langle a \rangle$ (m\{\mathbf{z}} 7), $S = \{a, a^{-1}, a^{j}, a^{-j}, a^{2+j}, a^{-2+j}\}$ j, if m = 2k, 2 ≤j≤(m/2) – 3 and if m = 2k + 1, $2 \le i \le (m/2) - 1$.

(2): $G = Z_m = \langle a \rangle$ (m\{\le 7), $S_1 = \{a^j, a^{-j}, a, a^{-1}, a^{2j+1}, a^{-2j-1}\}$ $2 \le j \le m - 2$, $j \ne m/2$ and $2j + 1 \ne m/2$, 0, 1, m -1, j, m

− j (mod m)

(3): $G = Z_m \times Z_n = \langle a \rangle \times \langle b \rangle$ (m, n\pi 3), $S = \{a, a^{-1}, b, b^{-1}, a^{2}b, a^{-2}b^{-1}\}.$

(4): $G = Z_{2m+1} \times Z_n = \langle a \rangle \times \langle b \rangle$ (m\le 2, n\le 3), $S = \{ a^m, a^{m+1}, a, a^{-1}, b, b^{-1} \}.$

(5):
$$
G = Z_{2m+1} \times Z_{2n+1} = \langle a \rangle \times \langle b \rangle
$$
 (m, n \ge 1),
\n $S = \{ a^m b^{n+1}, a^m b^n, a, a^{-1}, b, b^{-1} \}.$

(6): $G = Z_2 \times Z_{2m+1} \times Z_{2n+1} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ (m, n\le 1), $S = \{ab^m c^{n+1}, ab^{m+1}c^n, b, b^{-1}, c, c^{-1}\}.$ In the Case (1), if m = 3k, k ≥ 3, j = k -1, $\sigma = (a^k, a^{2k})$ \in A₁, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, $\Gamma =$ $Cay(G, S)$ is not normal, the Case (53) of Theorem 1.1. If m = 6k, k \pi \le 3, j = 3k - 3, $\sigma = (a, a^{3k+1})(a^4, a^{3k+4})$... (a^{3k+4}) ², a^{6k-2}) \in A₁, but $\sigma \notin Aut(G, S)$, by Proposition 2.1, Γ= Cay(G, S) is not normal, the Case (51 – S₂, m \geq 3) of Theorem 1.1. If m = 7; j = 2, $\sigma = (a^3, a^4) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, and if m = 14, j = 2, $\sigma = (a^2, a^{12}) (a^5,$ a^9) ∈ A₁, but σ ∉ Aut(G, S), by Proposition 2.1, Γ = Cay (G, S) is not normal, the Case (52) of the main theorem.

Otherwise, Γ = Cay (G, S) is normal by Lemma 3.3(42, 43). In the Case (2), if m = 7, j = 4, $\sigma = (a^5, a^9) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, and if $m = 14$, $j = 5, \sigma = (a^2, a^{12})$ (a^5 , a^9) \in A₁, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, $\Gamma =$ $Cay(G, S)$ is not normal, the Case (52) of Theorem 1.1. If m = 3k, j = k − 1, k ≥ 3, σ = (a^k, a^{2k}) ∈ A₁, but σ ∉ Aut(G, S), by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (53) of Theorem 1.1. If m = 4j, $j \ge 2$, $\sigma = (a^j, a^{3j}) \in A_1$, but $\sigma \notin Aut(G, S)$, by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (45) of Theorem 1.1. If m = 6k, j = 3k+1, k \ge 3, σ = (a, a^{3k+1})(a^4 , a^{3k+4})...(a^{3k-2} , a^{6k-2}) \in A₁, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (51- S₁) of Theorem 1.1. If m = 8k + 4, k \geq 1, for k = 2i -1 , j = 4i- 2, i $\geq 1, \sigma = (a^2, a^{12i-1})$ (a^6, a^{12i+3}) ... (a^{m-2}, a^{12i-2}) ⁵) ∈ A₁, but $σ \notin Aut(G, S)$, by Proposition 2.1, $Γ =$ $Cay(G, S)$ is not normal, the Case (54) of Theorem 1.1, and for $k=2i$, $j = 12i + 2$, $i \ge 1$, $\sigma = (a^2, a^{4i+3})$ (a^6 , a^{4i+7} ...(a^{m-2} , a^{4i-1}) \in A₁, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, Γ =Cay(G, S) is not normal, the Case (55) of Theorem 1.1. In the Case (3), if m = $n = 3$, $\sigma =$ $(ab, a²b²) \in A₁$, but $\sigma \notin Aut(G, S)$, by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (56) of the main theorem. If m = 4, $\sigma = (ab^2, a^3b^2) \in A_1$, but $\sigma \notin$ Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not normal, the Case (50) of Theorem 1.1. Otherwise, $Γ =$ Cay (G, S) is normal by Lemma 3.3(27).

In the Case (4), if $m = 2$, we have the Case (21) of Theorem 1.1. if m≥ 3, Γ = Cay(G, S) is normal by Lemma 3.3(28). In the Case (5), if $m = n = 1, \sigma = (ab,$ a^2b^2) \in A₁, but \notin Aut(G, S), by Proposition 2.1, Γ = $Cay(G, S)$ is not normal, the Case (56) of Theorem 1.1. Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(29). In the Case (6), Γ = Cay(G,S) is normal by Lemma 3.3(30).

4. Conclusion

Let Γ = Cay (G, S) be a connected Cayley graph of a abelian group G on S. In this paper we have shown all non-normal Cayley graph Γ with valency 6.

References

- [1] Alspach, B., Conder, M., Marusic, D., Xu, M.Y., *"Two-Arc Transitive Circulants"*, Journal of Algebraic Combinatorics, 5, 1996, PP. 83-86.
- [2] Xu, M.Y., *"Half-Transitive Graphs of Prime-Cube Order"*, Journal of Algebraic Combinatorics,1, 1992, PP. 275-292.
- [3] Alspach, B., *"Point-Symmetric Graphs and Digraphs of Prime Order and Transitive Permutation Groups of Prime Order*", J. Combin. Theory, 15, 1973, PP. 12-17.
- [4] Du, S.F., Wang, R.J., Xu, M.Y. *"On Normality of Cayley Digraphs of Order Twice a Prime*", Australian Journal of Combinatorics, 18, 1998, PP. 227-234.
- [5] Baik, Y.G., Feng, Y.Q., Sim, H.S., *"The Normality of Cayley Graphs of Finite Abelian Group with Valency 5"*, Sys. Sci. and Math. Sci., 13(4), 2000, PP. 420-431.
- [6] Baik, Y.G., Feng, Y.Q., Sim, H.S., Xu, M.Y., *"On The Normality of Cayley Graphs of Abelian Group"* , Algebra Colloq. 5, 1998, PP. 297-304.
- [7] Feng, Y.Q., Gao, T.P., *"Automorphism Groups and Isomorphism of Cayley Digraphs of Abelian Groups",* Australian Journal of Combinatorics, 16 1997, PP. 183-187.
- [8] Wang, C.Q., Wang, D.J., Xu, M.Y., *"On Normal Cayley Graphs of Finite Groups",* Science in China (A), 28(2), 1998, PP. 131-139.
- [9] Xu, M.Y., *"Automorphism Groups and Isomorphism of Cayley Graphs*", Discrete Math, 182, 1998, PP. 309-319.